Received 12 December 2003 Accepted 18 December 2003

Online 10 January 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Masood Parvez,^a* Sadiq-ur-Rahman,^b Saqib Ali^b and Muhammad Mazhar^b

^aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, and ^bDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan

Correspondence e-mail: parvez@ucalgary.ca

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.003 Å R factor = 0.044 wR factor = 0.119 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The molecules of the title compound, $C_{12}H_{14}O_4$, form dimeric pairs about inversion centers through hydrogen-bonding interactions between carboxylic acid groups. These hydrogen-bonding interactions can be described in terms of the graph-set notation $R_2^2(8)$.

n-Butyl hydrogen phthalate

Comment

Phthalic anhydride shows high reactivity towards nucleophiles, *e.g.* amines, alcohols *etc.* It is used for the synthesis of alkyl and phenyl hydrogenphthalates that can then be employed for syntheses of corresponding phthalamates (Leung & Frechet, 1993).

The molecules of (I) form dimeric pairs (Fig. 1) about inversion centers through hydrogen-bonding interactions between carboxylic acid groups. These hydrogen-bonding interactions can be described in terms of the graph-set notation $R_2^2(8)$ (Bernstein *et al.*, 1994); details of the hydrogenbonding geometry are in Table 2. The bond distances C7–O1 and C7–O2 [1.267 (2) and 1.273 (2) Å, respectively] are essentially identical within experimental error and lie between those of a single and a double C–O bond, with H2 weakly bonded to O2, forming a delocalized eight-membered ring system. Atom H2 lies between O2 and O1ⁱ (symmetry code as in Table 2), with O–H distances of 1.24 (2) and 1.39 (2) Å,

Figure 1

*ORTEP*II (Johnson, 1976) drawing of the hydrogen-bonded dimer of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (*) 1 - x, -y, 2 - z.]

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

respectively. The remainder of the molecular dimensions are unexceptional. The mean plane of the carboxylic acid group (C1/C7/O1/O2) is inclined at an angle of 50.14 (7)° to the benzene ring, while the alkoxycarbonyl group (C2/C8/O3/O4) is inclined at 35.76 (7)° to the benzene ring. The *n*-butyl chain is fully extended, with a torsion angle C9–C10–C11–C12 of 177.50 (14)°.

Experimental

A mixture of phthalic anhydride (2.5 g, 0.017 mol) and 1-butanol (dry and in excess) (Armarego & Perrin, 1997) was refluxed for 4 h. The reaction mixture was cooled to room temperature, washed with water and extracted with CHCl₃. After drying over anhydrous Na₂SO₄, it was filtered and evaporated to dryness, affording a colorless solid in 80% yield (Leung & Frechet, 1993); m.p. 345–347 K. Crystals suitable for X-ray crystallographic study were grown from a concentrated solution of (I) in 1-butanol, to which a few drops of *n*-hexane were added. Slow evaporation of the solvent mixture at room temperature over several days yielded fine crystals that were subsequently washed with *n*-hexane.

Crystal data

$C_{12}H_{14}O_4$	$D_x = 1.279 \text{ Mg m}^{-3}$
$M_r = 222.23$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 4888
$a = 10.832 (4) \text{\AA}$	reflections
b = 8.845 (3) Å	$\theta = 2.9-27.5^{\circ}$
c = 12.922 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 111.22 \ (2)^{\circ}$	T = 173 (2) K
$V = 1154.1 (7) \text{ Å}^3$	Prism, colorless
Z = 4	$0.22 \times 0.20 \times 0.18 \text{ mm}$

 $R_{\rm int} = 0.042$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -14 \rightarrow 14$

 $k = -11 \rightarrow 11$

 $l=-16\rightarrow 16$

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: none 4888 measured reflections 2619 independent reflections 1629 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.057P]
$wR(F^2) = 0.119$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.01$
2619 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
149 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.063 (16)
refinement	

Table 1

Selected	geometric	parameters	(Å,	°)	1.
----------	-----------	------------	-----	----	----

O1-C7	1.267 (2)	O4-C8	1.334 (2)
O2-C7	1.273 (2)	O4-C9	1.460 (2)
O3-C8	1.204 (2)		
C8-O4-C9	116.14 (12)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^{i}$	1.24 (2)	1.39 (2)	2.626 (2)	175.4 (14)
Symmetry code: (i)	-r - v 2 - z			

H atoms were located in a difference Fourier synthesis and were included in the refinement at idealized positions (C-H = 0.95–0.99 Å), with isotropic displacement parameters equal to 1.5 (methyl) and 1.2 (others) times U_{eq} of their parent atoms, with the exception of

the carboxylic acid H atom, which was refined freely.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *HKL DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALE*-*PACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SAPI*91 (Fan, 1991); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

References

Armarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, 4th ed., pp. 121–130. Oxford: Pergamon.

Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi &J. D. Dunitz, pp. 431–507. New York: VCH Publishers.

Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Leung, M. K. & Frechet, J. M. J. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2329–2335.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.